(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

Rewrite Strategy: INNERMOST

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
odd(Cons(x, Cons(x3_0, xs4_0))) →+ odd(xs4_0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs4_0 / Cons(x, Cons(x3_0, xs4_0))].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

S is empty.
Rewrite Strategy: INNERMOST

(5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
Cons/0

(6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

S is empty.
Rewrite Strategy: INNERMOST

(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(8) Obligation:

Innermost TRS:
Rules:
odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil

(9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
odd, even

They will be analysed ascendingly in the following order:
odd = even

(10) Obligation:

Innermost TRS:
Rules:
odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

The following defined symbols remain to be analysed:
even, odd

They will be analysed ascendingly in the following order:
odd = even

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)

Induction Base:
even(gen_Cons:Nil3_0(*(2, 0))) →RΩ(1)
True

Induction Step:
even(gen_Cons:Nil3_0(*(2, +(n5_0, 1)))) →RΩ(1)
odd(gen_Cons:Nil3_0(+(1, *(2, n5_0)))) →RΩ(1)
even(gen_Cons:Nil3_0(*(2, n5_0))) →IH
True

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(12) Complex Obligation (BEST)

(13) Obligation:

Innermost TRS:
Rules:
odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

The following defined symbols remain to be analysed:
odd

They will be analysed ascendingly in the following order:
odd = even

(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol odd.

(15) Obligation:

Innermost TRS:
Rules:
odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)

(17) BOUNDS(n^1, INF)

(18) Obligation:

Innermost TRS:
Rules:
odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)

Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)

(20) BOUNDS(n^1, INF)